

TAMING THE DISTANCE CONJECTURE

Stefano Lanza

based on arXiv: 2206.00697
with Thomas Grimm, Chongchuo Li

21st String Phenomenology Conference ~ Liverpool, 2022

[Ooguri, Vafa, 2006]

Consider an EFT, valid up to the cutoff $\Lambda_{\rm EFT}$, endowed with a set of moduli φ^i and described by the action:

$$S^{(D)} = M_{\rm P}^{D-2} \int d^D x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} G_{ij}(\varphi) \partial_{\mu} \varphi^i \partial^{\mu} \varphi^j + \dots \right)$$

[Ooguri, Vafa, 2006]

Consider an EFT, valid up to the cutoff $\Lambda_{\rm EFT}$, endowed with a set of moduli φ^i and described by the action:

$$S^{(D)} = M_{\rm P}^{D-2} \int d^D x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} G_{ij}(\varphi) \partial_{\mu} \varphi^i \partial^{\mu} \varphi^j + \dots \right)$$

[Ooguri, Vafa, 2006]

Consider an EFT, valid up to the cutoff $\Lambda_{\rm EFT}$, endowed with a set of moduli φ^i and described by the action:

$$S^{(D)} = M_{\rm P}^{D-2} \int d^D x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} G_{ij}(\varphi) \partial_{\mu} \varphi^i \partial^{\mu} \varphi^j + \dots \right)$$

SWAMPLAND DISTANCE CONJECTURE

1. The geodesic distance is <u>not</u> upper bounded:

$$\forall C > 0, \varphi_0 \in \mathcal{M} \qquad \exists \varphi \in \mathcal{M}$$

such that

$$d(\varphi_0, \varphi) > C$$

⇒ There exist some boundaries located at infinite field distance.

[Ooguri, Vafa, 2006]

Consider an EFT, valid up to the cutoff $\Lambda_{\rm EFT}$, endowed with a set of moduli φ^i and described by the action:

$$S^{(D)} = M_{\rm P}^{D-2} \int d^D x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} G_{ij}(\varphi) \partial_{\mu} \varphi^i \partial^{\mu} \varphi^j + \dots \right)$$

SWAMPLAND DISTANCE CONJECTURE

2. Along paths leading to infinite field distance points, an infinite tower of states becomes exponentially light

$$M_n(\varphi) \sim M_n(\varphi_0) e^{-\lambda d(\varphi,\varphi_0)}$$

with λ an O(1)-parameter.

 \Rightarrow The EFT cutoff $\Lambda_{\rm EFT}$ ought to be exponentially reduced.

Addressing the Distance Conjecture

I. PATH DEPENDENCE

Infinite distance points can be reached also via nongeodesic paths.

Consider an emergent tower along a geodesic path

$$M_n(\varphi) \sim M_n(\varphi_0) e^{-\lambda d(\varphi,\varphi_0)}$$

Does this tower remain relevant also along other, non-geodesic paths?

Addressing the Distance Conjecture

I. PATH DEPENDENCE

Infinite distance points can be reached also via non-geodesic paths.

Consider an emergent tower along a geodesic path

$$M_n(\varphi) \sim M_n(\varphi_0) e^{-\lambda d(\varphi, \varphi_0)}$$

Does this tower remain relevant also along other, non-geodesic paths?

II. COUNTING THE TOWERS OF STATES

How many towers are needed to realise the Distance Conjecture?

Are they finite, or infinite in number?

THE TAMENESS CONJECTURE

[Grimm, 2021]

The **Tameness Conjecture** restricts the functional form of any EFT coupling, by assuming that they have to be definable in the $\mathbb{R}_{an,exp}$ *o-minimal structure*:

$$S^{(D)} = \int \left(\frac{1}{2} M_{\mathrm{P}}^{D-2} R * 1 - \frac{1}{2} M_{\mathrm{P}}^{D-2} G_{ab}(\varphi, \lambda) d\varphi^{a} \wedge * d\varphi^{b} \right)$$
$$- M_{\mathrm{P}}^{D-2(p_{\mathcal{I}}+1)} f_{\mathcal{I}\mathcal{J}}(\varphi, \lambda) F_{p_{\mathcal{I}}+1}^{\mathcal{I}} \wedge * F_{p_{\mathcal{J}}+1}^{\mathcal{J}} - V(\varphi, \lambda) + \dots \right)$$

Namely, any EFT coupling g stems from the locus

$$\exists x_1, \dots, x_l : P_i(\varphi, \lambda, x, g, f_1, \dots, f_m, e^{\varphi}, e^{\lambda}, e^x, e^g) = 0,$$
$$Q_j(\varphi, \lambda, x, g, f_1, \dots, f_m, e^{\varphi}, e^{\lambda}, e^x, e^g) > 0,$$

THE TAMENESS CONJECTURE

[Grimm, 2021]

The **Tameness Conjecture** restricts the functional form of any EFT coupling, by assuming that they have to be definable in the $\mathbb{R}_{an,exp}$ *o-minimal structure*:

$$S^{(D)} = \int \left(\frac{1}{2} M_{\mathrm{P}}^{D-2} R * 1 - \frac{1}{2} M_{\mathrm{P}}^{D-2} G_{ab}(\varphi, \lambda) d\varphi^{a} \wedge * d\varphi^{b} \right)$$
$$- M_{\mathrm{P}}^{D-2(p_{\mathcal{I}}+1)} f_{\mathcal{I}\mathcal{J}}(\varphi, \lambda) F_{p_{\mathcal{I}}+1}^{\mathcal{I}} \wedge * F_{p_{\mathcal{J}}+1}^{\mathcal{J}} - V(\varphi, \lambda) + \dots \right)$$

Namely, any EFT coupling g stems from the locus

THE TAMENESS CONJECTURE

[Grimm, 2021]

The **Tameness Conjecture** restricts the functional form of any EFT coupling, by assuming that they have to be definable in the $\mathbb{R}_{an,exp}$ *o-minimal structure*:

$$S^{(D)} = \int \left(\frac{1}{2} M_{\mathrm{P}}^{D-2} R * 1 - \frac{1}{2} M_{\mathrm{P}}^{D-2} G_{ab}(\varphi, \lambda) d\varphi^{a} \wedge * d\varphi^{b} \right)$$
$$- M_{\mathrm{P}}^{D-2(p_{\mathcal{I}}+1)} f_{\mathcal{I}\mathcal{J}}(\varphi, \lambda) F_{p_{\mathcal{I}}+1}^{\mathcal{I}} \wedge * F_{p_{\mathcal{J}}+1}^{\mathcal{J}} - V(\varphi, \lambda) + \dots \right)$$

Namely, any EFT coupling g stems from the locus

$$\exists x_1, \dots, x_l : P_i(\varphi, \lambda, x, g, f_1, \dots, f_m, e^{\varphi}, e^{\lambda}, e^x, e^g) = 0,$$
$$Q_j(\varphi, \lambda, x, g, f_1, \dots, f_m, e^{\varphi}, e^{\lambda}, e^x, e^g) > 0,$$

Tame couplings

$$g(\varphi) = e^{\alpha \varphi}$$
 or $g(\varphi) = \sum_{i} \alpha_{i} \varphi^{\beta_{i}}$

Non-tame couplings

$$g(\varphi) = \sin \varphi$$

SPECIAL CLASSES OF TAME COUPLINGS

[Bakker, Klinger, Tsimerman, 2020]

SPECIAL CLASSES OF TAME COUPLINGS

[Bakker, Klinger, Tsimerman, 2020]

We focus on two classes of tame couplings:

Monomially tamed couplings, with definite growth properties

These are couplings of the general form

$$g(\phi,s) = \sum_{\mathbf{m}} \rho_{\mathbf{m}}(e^{-s^i},\phi^{\alpha}) \underbrace{(s^1)^{m_1} \cdots (s^n)^{m_n}}_{\text{restricted analytic functions}}$$

which can be well-approximated by monomials

$$g(\phi, s) \sim (s^1)^{k_1} \cdots (s^n)^{k_n}$$
 on \mathcal{U}

or, there exist C_1 , $C_2 > 0$:

$$C_1(s^1)^{k_1}\cdots(s^n)^{k_n} < g(\phi,s) < C_2(s^1)^{k_1}\cdots(s^n)^{k_n}$$
 on \mathcal{U}

SPECIAL CLASSES OF TAME COUPLINGS

[Bakker, Klinger, Tsimerman, 2020]

We focus on two classes of tame couplings:

Polynomially tamed couplings, with indefinite growth properties

These are couplings of the general form

$$g(\phi, \mathbf{s}) = \sum_{\mathbf{m}} \rho_{\mathbf{m}}(e^{-\mathbf{s}^{i}}, \phi^{\alpha}) \underbrace{(\mathbf{s}^{1})^{m_{1}} \cdots (\mathbf{s}^{n})^{m_{n}}}_{\text{restricted analytic functions}}$$

which are, at most, upper bounded by a monomial

$$g(\phi, \mathbf{s}) \prec (\mathbf{s}^1)^{k_1} \cdots (\mathbf{s}^n)^{k_n}$$
 on \mathcal{U}

or, there exists C > 0:

$$g(\phi, \mathbf{s}) < C(\mathbf{s}^1)^{k_1} \cdots (\mathbf{s}^n)^{k_n}$$
 on \mathcal{U}

THE DISTANCE CONJECTURE AND PATH-INDEPENDENCE

Assumptions

$$M_n^{(a)}$$
 $e^{-\lambda d(s)}$ polynomially tamed
i.e. $M_n^{(a)} \prec (s^1)^{p_1} \cdots (s^n)^{p_n}$ $e^{-\lambda d(s)} \prec (s^1)^{m_1} \cdots (s^n)^{m_n}$

⇒ In general, no leading term can be singled out in the near boundary region.

THE DISTANCE CONJECTURE AND PATH-INDEPENDENCE

Assumptions

$$M_n^{(a)}$$
 $e^{-\lambda d(s)}$ polynomially tamed
i.e. $M_n^{(a)} \prec (s^1)^{p_1} \cdots (s^n)^{p_n}$ $e^{-\lambda d(s)} \prec (s^1)^{m_1} \cdots (s^n)^{m_n}$

⇒ In general, no leading term can be singled out in the near boundary region.

We **partition** the near-boundary region in subsets $\mathcal{U}^{(A)}$ obeying two properties:

- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ are strictly decreasing (Monotonicity Theorem);
- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ display a definite leading behavior. For instance, they can both be monomially tamed

THE DISTANCE CONJECTURE AND PATH-INDEPENDENCE

<u>Assumptions</u>

$$M_n^{(a)} \qquad e^{-\lambda d(s)} \quad \text{polynomially tamed}$$

 $M_n^{(a)} \prec (s^1)^{p_1} \cdots (s^n)^{p_n} \qquad e^{-\lambda d(s)} \prec (s^1)^{m_1} \cdots (s^n)^{m_n}$

⇒ In general, no leading term can be singled out in the near boundary region.

We partition the near-boundary region in subsets $\mathcal{U}^{(A)}$ obeying two properties:

- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ are strictly decreasing (Monotonicity Theorem);
- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ display a definite leading behavior. For instance, they can both be monomially tamed

$$M_n^{(a)} \sim (s^1)^{p_1} \cdots (s^n)^{p_n} \sim e^{-\lambda d}$$

Path-indipendency: If on each $\mathcal{U}^{(A)}$ we can establish

$$M_n^{(a)}(s) \sim e^{-\lambda d(s)} \sim f_{\text{leading}}(s)$$

the Distance Conjecture is realized along every path in $\mathcal{U}^{(A)}$.

THE DISTANCE CONJECTURE AND FINITENESS

<u>Assumptions</u>

$$M_n^{(a)} \qquad e^{-\lambda d(s)} \qquad \text{polynomially tamed}$$

i.e.
$$M_n^{(a)} \prec (s^1)^{p_1} \cdots (s^n)^{p_n} \qquad e^{-\lambda d(s)} \prec (s^1)^{m_1} \cdots (s^n)^{m_n}$$

⇒ In general, no leading term can be singled out in the near boundary region.

We **partition** the near-boundary region in subsets $\mathcal{U}^{(A)}$ obeying two properties:

- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ are strictly decreasing (Monotonicity Theorem);
- On each $\mathcal{U}^{(A)}$, $M_n^{(a)}(s)$ and $e^{-\lambda d(s)}$ display a definite leading behavior. For instance, they can both be monomially tamed

$$M_n^{(a)} \sim (s^1)^{p_1} \cdots (s^n)^{p_n} \sim e^{-\lambda d}$$

Finiteness of the number of the infinite towers of states:

Only a **finite** number of sets $\mathscr{U}^{(A)}$ is required to realize

$$M_n^{(a)}(s) \sim e^{-\lambda d(s)} \sim f_{\text{leading}}(s)$$

path-independently.

⇒ Only a **finite** number of tower of states is required to realize the Distance Conjecture.

HOW TO PROBE TAME COUPLINGS

Polynomially tame couplings can be tested via the **Curve reduction theorem**. For the Distance Conjecture, this implies the following:

■ Decompose the near-boundary regions $\mathcal{U}^{(A)}$ in sets such that:

$$M_n(s) \qquad e^{-\lambda d(s)} \qquad \text{monomially tamed}$$

■ If $M_n \sim e^{-\lambda d}$ on the linear paths

$$s^i = s_0^i + e^i \sigma$$
, $\phi^i = \text{const.}$

then, the Distance Conjecture holds pathindependently on $\mathscr{U}^{(A)}$.

HOW TO PROBE TAME COUPLINGS

Polynomially tame couplings can be tested via the **Curve reduction theorem**. For the Distance Conjecture, this implies the following:

■ Decompose the near-boundary regions $\mathcal{U}^{(A)}$ in sets such that:

$$M_n(s) \qquad e^{-\lambda d(s)} \qquad \text{monomially tamed}$$

■ If $M_n \sim e^{-\lambda d}$ on the linear paths

$$s^i = s_0^i + e^i \sigma$$
, $\phi^i = \text{const.}$

then, the Distance Conjecture holds pathindependently on $\mathscr{U}^{(A)}$.

In 4D, the paths

$$s^i = s_0^i + e^i \sigma$$
, $\phi^i = \text{const.}$

in field space can be regarded as backreaction of cosmic strings.

⇒ Cosmic strings strings are good candidates to probe the near-boundary physics.

Reminiscent of the Distant Axionic String Conjecture. [SL, Marchesano, Martucci, Valenzuela, '21]

CONCLUSIONS AND FUTURE OUTLOOK

Assuming that the couplings are "tame" allows for better addressing questions about the EFT structures in generality.

We have showed:

- how the Distance Conjecture can be realized path-independently;
- that only a finite number of towers is needed in order to realize the Distance Conjecture;
- how to probe some special classes of tame couplings via cosmic strings.

Some open questions:

- Are polynomially and monomially tamed functions enough to examine all the corners of EFT moduli spaces?
- Can we address other Swampland questions via Tameness?
 [works in progress with T.Grimm, M. Van Vliet, T. Van Vuren]
- Can Tame structure be employed to test non-supersymmetric settings?

Thanks for your attention!

BACKUP SLIDES

AN EXAMPLE: F-THEORY / TYPE IIB EFTS

Consider 4D EFTs obtained compactifying Type IIB string theory over a Calabi-Yau three-fold. The couplings of the vector multiplet sector are fully determined by the Calabi-Yau periods

$$\Pi^{\mathcal{I}}(\varphi) = \int_{\Gamma_{\mathcal{I}}} \Omega \qquad \qquad \varphi^i = a^i + \mathbf{i} s^i : h^{2,1} \text{-complex structure moduli}$$

EFT couplings, defined on $\Sigma = \{s^1 > s^2 > ... > s^n > 1\}$:

$$e^{-K^{\mathrm{cs}}} = \mathbf{i} \int_{Y} \Omega \wedge \bar{\Omega} = \mathbf{i} \, \mathbf{\Pi}^{T} \eta \bar{\mathbf{\Pi}}$$

$$K_{i\bar{\jmath}}^{\rm cs} = \frac{\partial^2 K^{\rm cs}}{\partial \varphi^i \partial \bar{\varphi}^{\bar{\jmath}}}$$

$$M_{\mathbf{q}} = |\mathcal{Z}_{\mathbf{q}}| = e^{\frac{K^{\mathrm{cs}}}{2}} \left| \int_{Y} q \wedge \Omega \right|$$

$$\mathcal{Q}_{\mathbf{q}}^2 = \frac{1}{2} \int_Y q \wedge \star q$$

AN EXAMPLE: F-THEORY / TYPE IIB EFTS

Consider 4D EFTs obtained compactifying Type IIB string theory over a Calabi-Yau three-fold. The couplings of the vector multiplet sector are fully determined by the Calabi-Yau periods

$$\Pi^{\mathcal{I}}(\varphi) = \int_{\Gamma_{\mathcal{I}}} \Omega$$

$$\varphi^i = a^i + \mathbf{i} s^i : h^{2,1} - \text{complex structure moduli}$$

EFT couplings, defined on $\Sigma = \{s^1 > s^2 > ... > s^n > 1\}$:

Kähler potential

Kähler metric

Masses of D3-particles

Charges of D3-particles/gauge couplings

[Bakker, Klinger, Tsimerman, 2020]